

The Stillwater Reservoir Conflict

Background to the conflict

• data about the site.

Instructions

Study Figure 2 which shows information about each of the four potential reservoir sites and Tables 1 and 2 which are guides to the concerns of each of the six interested parties.

- (a) From the point of view of each of the interested parties evaluate the problems and proposed solutions and rank the four sites from the most suitable to the least suitable with reasons. Select the best site from the point of view of the party interests.
- (b) Carefully analyse all the data and evaluate all the rankings and reasons. Decide upon the most suitable site and provide data that supports your final choice of site.

Geological features

km

Site A data

Distance from conurbation	112 km
Annual rainfall	2123 mm
Farming types	Sheep. Plan for afforestation held in abeyance.
Geology	Ordovician slates intruded by granite
Points of importance	Rare alpine flora native (i.e. naturally occurring). SSSI - rare flower locality. A 12 km access road will be needed if the reservoir is built on this site.
Reservoir potential	Water supply, hydroelectric.

Potential reservoir site A

Topographic features

Potential reservoir site B

Topographic features

Geological features

Pb Zn

m^m m

Mineral vein: Cu = copper, Sn = tin Zn = zinc, Pb = lead

Thermal metamorphic aureole

Proposed dam site and reservoir area

Site B data

Distance from conurbation	77 km	
Annual rainfall	1741 mm	
Farming types	Sheep on valley sides, beef and dairy cattle on valley floor	
Geology	Syncline in Silurian limestone-shale sequence.	
Points of importance	Area inside National Park. SSSI - fossil locality.	
Reservoir potential	Water supply, tourism (e.g. sightseeing and fishing).	

Prospective reservoir site C

Topographic features

Thermal metamorphic aureole

Proposed dam site and reservoir area

Site C data

Distance from conurbation	45 km
Annual rainfall	1304 mm
Farming types	Beef, dairy and arable farming.
Geology	Dipping Carboniferous sandstone - shale sequence.
Points of mportance	Two areas of ancient natural woodland. 15th century mill.
Reservoir potential	Water supply. Water sport amenity for nearby town, fishing, bird watching.

Prospective reservoir site D

Topographic features

Geological features

Site D data

Distance from conurbation	21 km
Annual rainfall	720 mm
Farming types	Dairy, arable and market gardening.
Geology	Dipping Carboniferous coal measures overlain unconformably by till (boulder clay).
Points of importance	Mereside bird sanctuary. Local wildlife under pressure.
Reservoir potential	Water supply. Water sport amenity for conurbation (fishing and birdwatching).

Interested	Conservationists	Farmers	Planners from the local water authority
party			
Main	Concerned with the	Concerned with having the	Concerned primarily with providing a new, low-
concerns	preservation of sites	reservoir sited to result in	cost, pollution-free water supply for the
	of biological,	the least possible loss of	conurbation. However, the reservoir would
	geological, and	agricultural land to	have additional value if it were to generate
	historical	themselves.	hydroelectric power or serve as a water-sport
	importance,		amenity.
	together with the		
	maintenance of		
	ecological balance		
	and the quality of		
	the environment in		
	general.		
Points to	A. SSSIs are		A. To generate hydroelectric power a head of
consider	designated Sites of		water and a large volume are needed, and HEP
	Special Scientific		stations are expensive to construct.
	Interest.		
			B. The best type of reservoir for water sport will
	B. New reservoirs		have a large surface area.
	may prove to be		
	assets to wildlife eg.		C. The Water Authority will have to divert roads
	waterfowl, etc.		that will be flooded by the reservoir and will
			have to compensate people if their houses are
			drowned. This may be expensive - the average
			house price in 2020 is £315,000.

Table 1. Guide to the main concerns of conservationists, farmers, and planners from the local water authority.

Interested	Hydrologists	Hydrogeologists	Engineering geologists
Main concerns	Concerned with water supply to the reservoir through tributary streams and surface runoff and with surface water losses.	Concerned with groundwater flow and underground water supply to and loss from the reservoir.	Concerned with the feasibility and cost of building a dam, preferring a simple, low-cost dam.
Points to consider	 A. Runoff volume and runoff speed are greater on steep slopes with thin soils than on shallow slopes with thick soils. B. Evaporation rates will be affected by 	A. Reservoirs which would leak due to the permeability of the underlying. rocks may be sealed by using a clay lining, but this is a very expensive operation, particularly if it is needed over a large area.	 A. Choice of one of three of the main dam types shown in Figure 1. 1. A gravity dam. The weight holds the dam in position. The foundations must be excavated to sound bedrock. This type of dam needs a large volume of concrete or masonry and so needs a nearby suitable source of rock or sand and aggregate.
	climate (e.g. cloud cover, humidity, temperature, windspeed) and water surface area.	B. Groundwater flow into the reservoir must be free of pollutantsC. The porosities and permeabilities of the major rock types are shown in Table 4.	 An arch dam. The curved shape holds the dam in position against walls and floor of gorge- like valleys. It needs solid bedrock: joints and fractures are potential weaknesses. The volume of sand and aggregate needed is small. An embankment dam. Its weight and size hold the dam in position. The foundations must be firm. It has a very large volume and so a large quantity of low-quality fill from a nearby source is needed. Primary rock strengths and secondary weaknesses such as joints and faults must be

 Table 2. Guide to the main concerns of hydrologists, hydrogeologists, and engineering geologists.

Rock Type	Primary Porosity	Primary permeability	Potential for Secondary Porosity & Permeability
Granite	0%	Low	Fairly high
Thermally metamorphosed slate	0%	Low	Fairly high
Sandstone (after compaction & diagenesis)	10 - 30%	Low to high	Fairly high
Shale (after compaction & diagenesis)	15 - 20%	Low	Low
Limestone (after compaction & diagenesis)	0 - 10%	Usually, low	High
Coal (after compaction & diagenesis)	0%	Low	Low
Clay	50 - 80%	Low	Low

Table 3. Porosities and permeabilities of the major rock types

Acknowledgements

This activity, originally produced by Chris King (King, 1983), was updated by Maggie & Peter Williams (GeoHubLiverpool).

References

King, C. (1983) The Stillwater Reservoir conflict - a simulation game. *Geology Teaching* 8 (3), pp.98–102.

- Website for the British Dam Society (BDS) information about types of dams, uses and construction methods. <u>https://britishdams.org/about-dams/dam-information/</u> [Accessed December 2020]
- The Education Zone of the BDS website free resources about the science involved in planning for, designing and constructing dams/ reservoirs and information about the impacts of dams. <u>https://britishdams.org/about-dams/education-zone/</u> [Accessed December 2020]
- Wikipedia site that provides some excellent photographs of different types of dams. <u>https://en.wikipedia.org/wiki/Dam</u> [Accessed December 2020]
- Youtube video about building the Three Gorges Dam the largest dam in the world. <u>https://www.youtube.com/watch?v=b8cCsUBYSkw</u> [Accessed December 2020]
- 5. Defra publication: Delivering benefits through evidence lessons from historical dam incidents. <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/290812/scho0811buba-e-e.pdf</u> [Accessed December 2020]
- The Vajont slide: a new event chronology and the importance of geomorphology. <u>http://blogs.agu.org/landslideblog/2016/02/25/the-vajont-slide-1/</u> [Accessed December 2020]
- 7. This report outlines why catastrophic failures raise alarm about dams containing muddy mine wastes. <u>https://www.sciencemag.org/news/2020/08/catastrophic-failures-raise-alarm-about-dams-containing-muddy-mine-wastes</u> [Accessed December 2020]
- Wikipedia site that gives information about dam failures. <u>https://en.wikipedia.org/wiki/Dam_failure</u> [Accessed December 2020]
- Building Big: a website about civil engineering structures and information about different types of dams. <u>http://www.pbs.org/wgbh/buildingbig/dam/index.html</u> [Accessed December 2020]